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On the Measurement and Interpretation 
of Cross-Power-Spectra*) 

by 
Jens Trampe Broch, Dipl. Ing. E.T.H. 

A/S Bruel & Kjaer, Denmark 

ABSTRACT 
The mathematical correlation function technique has been utilized for a long time in 
turbulence research and other studies of randomly fluctuating phenomena. It has, however, 
been difficult to obtain the dependable analog time delay units required for a complete 
experimental investigation of the correlation function. By determining the socalied cross-power 
spectral density function, which is the Fourier transform of the correlation function, the use 
of time delay units can be avoided, and the correlation can be measured directly as a 
function of frequency. This paper outlines the basic theory of the cross-power spectrum 
technique and discusses some aspects of practical measurements. A relationship between 
the bandwidth of the filters used in the measuring system and the time difference between 
the two signals which are to be correlated is given. It is shown that for cross-spectral 
density measurements to be correct to within some 5 % the requirement 

Af r< 0,2 
must be fulfil led. Here Af is the filter bandwidth used for the analysis and T is the time 
difference between the two signals. 
Finally, it is shown how the cross-power spectrum technique can be used to determine 
complex transfer characteristics of physical systems without interfering with the systems' 
normal operation, to determine time delays in acoustic wave fields and to estimate the 
dependency of correlation coefficients upon frequency. 

SOMMAIRE 
La technique de la fonction mathSmatique de correlation est utilisee depuis longtemps dans 
I'etude des turbulences et d'autres phenomenes variant de facon aleatoire. 
II a cependant §t§ tres difficile d'obtenir les retardateurs analogique fiables requis pour les 
recherches exp6rimentales completes de la fonction de correlation. 
En determinant la fonction de densite interspectrale, ainsi appelee, que est la transforms 
de Fourier de la fonction de correlation, I'utilisation d'unites a retard peut etre evit§e et la 
correlation peut etre mesur§e directement comme une fonction de la frequence. Cet article 
esquisse la thSorie de base de la technique de mesure interspectrale et. donne quelques 
aspects pratiques. Un rapport entre la largeur de bande des filtres utilises dans le systeme 
de mesure et la difference de temps entre les deux signaux a mettre en correlation est 
donne. II apparait que, pour que les mesures de densite interspectrale soint correctes a 
quelques 5 % pres, la condition requise 

Af r £ 0,2 
doit etre remplie. Ici Af est la largeur de bande du filtre utilisee pour I'analyse et % est la 
difference de temps entre les deux signaux. Enfin il est demontre comment la technique de 
mesure interspectrale peut etre utilisee pour determiner les caracteristiques de transfert 
complete de systemes physiques sans interference dans le fonctionnement normal du 
systeme, pour determiner les retards dans les champs d'ondes acoustiques et pour estimer 
la subordination a la frequence, des coefficients de correlation. 

ZUSAMMENFASSUNG 
Die Korrelationsfunktion dient seit langem als mathematisches Hilfsmittel fur die Erforschung 
von Turbulenzen und anderen stochastisch veranderlichen Vorgangen. Es war jedoch 

*) Paper presented at the 6th International Congress on Acoustics, Tokyo, Japan 2 1 - 2 8 
August 1968. 
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schwierig, zuverlassige analoge Zeitverzogerungsglieder zu bauen, welche fur eine voll-
standige experimentelle Ermittlung der Korrelationsfunktion benotigt werden. Durch Be-
stimmen der sogenannten spektralen Kreuzleistungsdichte, welche die Fourier-Transformierte 
der Kreuzkorrelationsfunktion darstellt, laBt sich die Verwendung von Zeitverzogerungs-
gliedern vermeiden, und die Korrelation kann direkt als Funktion der Frequer.z gemessen 
werden. Nach einem Oberblick uber die zugrunde liegende Theorie der Kreuzleistungs-
spektrum-Technik werden in diesem Aufsatz einige Aspekte praktischer Messungen diskutiert. 
Eine Beziehung zwischen der Bandbreite Af beider Filter in der MeBapparatur und der Zeit-
differenz t zwischen den beiden Signalen, welche zu korrelieren sind, wird angegeben. 
Es zeigt sich, daB Af r < 02 

sein muB, damit die Messungen der Kreuzleistungsdichte auf etwa 5 % genau werden. 
SchlieBlich wird gezeigt, wie die Kreuzleistungsspektrum-Technik sich benutzen laBt, um 
komplexe Obertragungscharakteristiken physikalischer Systeme ohne Unterbrechung des 
normalen Betriebs zu bestimmen, um Zeitverzogerungen in Schallfeldern zu messen und um 
die Frequenzabhangigkeit von Korrelationskoeffizienten abzuschatzen. 

Introduction 
When it is desired to find the relationship, if any, between data observed 
at one point in a physical system and data observed at another point in the 
system use can be made of the methods of correlation techniques. One such 
method is mathematically formulated in the so-called cross-correlation-function: 

T 

V * M = T
N m - ^ \ f*(t)fy(t + T)dt (1) 

o 
where fx(t) is the magnitude of the process measured at the point x at an 
arbitrary instant of time, t, and fy(t+r) is the magnitude of the process 
measured at the point y at a time t later. In general the cross-correlation 
function turns out to show a fairly complicated dependency of r and to obtain 
meaningful data some sort of frequency analysis of the correlation relationship 
is necessary. 
For a long time people involved in turbulence research have utilized correlation 
measurement techniques and analog electronic correlators, which actually were 
nothing but electronic multipliers without time delay circuits, have been 
commercially available on the market for some time. It has been, however, an 
expressed desire to obtain time delay units for these multipliers so that the 
complete correlation could be measured, both as a function of time and space, 
Dependable time delay units are, on the other hand, not so easy to build and 
very few such units have been successfully constructed according to analog 
principles. 
There are ways out of this. One method, which is very elegant but rather 
expensive, is to utilize digital sampling principles. Another method, which in 
the authors opinion looks at least equally promising at present, is to use 
analog cross-spectral-density measurements with very narrow band frequency 
analyzers. 
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Basic Theory of the Cross Power Spectrum Technique 
Mathematically the cross-spectral-density function is obtained by taking the 
Fourier transform of the cross-correlation function: 

^ (0 = J>„ W e " i2*fr dx (2) 
— oo 

where wxy(f) is the (complex) cross-spectral density function. 
From the theory of Fourier integrals it is known that when equation (2) is valid 
the yj*y (T) can also be found by inversion: 

V*v(T)=°$wxy(f)e '^u df (3 ) 

— oo 

writing 

wxy (0 = | Wxy (f) | e " ](pf (4) 

and considering the fact that yxy (T) is always a real quantity one obtains: 
OO . /« f \ oo 

V>xy (r) = J I w,y (f) I e n " % ' *'' df = J | wxy (f) | cos (2afr ~ <pt) df (5) 
— OO - oo 

Fig. 7. Illustration of an 'Ideal" frequency analysis. 

Formula (5) can also be written: 
oo oo 

xp^ (T) = J I Wxy (/) cos cpt cos (2TT/T) df + J I wxy (f) sin <pf sin (2jrfr) df (6) 
— oo — oo 

Equations (1) and (6) form the basis for analog cross-spectral density measure­
ments as explained below: 
An ideal analog frequency analyzer will allow only that part of the signal 
to be measured which has frequency components within a narrow frequency 
band, Af, see Fig. 1. 
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Assuming that no attenuation or amplification of these frequency components 
take place in the analyzer, and that both analyzer channels used have equal 
phase shifts then the cross-correlation between the two measurement channels 
is given by the expression: 

f + Af 1 + Af 
(y*y) ^f = J 2 j wxy (f) | cos <p* cos (2jifr) df + J 2 | wxy (f) I sin rpf sin {2nh) df (7) 

The reason for introducing 2 wxy (/) instead of ivxy (f) is that in physically 
realizable systems only positive frequencies are involved, while wxy (/) was 
introduced for mathematical convenience where both positive and negative 
frequencies where considered, see equation (3). 

When At->0: 
(y*y) Af ~ 2 | Wxy (/) ] cos 9?f cos (2TT/T) Zlf + 2 | wxy (/) | sin <pf sin (2^r) J / (8) 

Setting r = 0 and utilizing equations (1) and (8) one obtains: 
T 

2 | wXY (f) | cos <pf Af = 7 _^ 0 0 - 7 - - \ U, (t) /YM (0 dt (9) 

o 

Rearranging equation (9) and setting 2 | w„y (/) | cos 99f = Cy (/) give3 

c"{f) =AITOArimoo Z?T\ ' •*> Wf- ®dt W 
O 

1 
Furthermore, again utilizing equation (1) and (8), and setting r = 7 ; 

Fig. 2. Principle of operation of an analog cross-spectrum analyzer. 
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(90° phase shift) gives: 
T 

r, ,,» lim lim "• V * 
Q*W= Af+o T^OOM\ t*« (0'v^ (t)dt (11) 

o 
* 

where Q^ (f) = 2 \ w*y (f) | sin q?f and fyAf is equal to fyAf shifted 90° in phase. 
Cxy(f) is denoted as the co-spectral density function while Qxy (/) is the 
quadrature (quad) spectral density function. 
Fig. 2 shows the principle of analog cross-spectral density measurements and 
it is seen that the main operations necessary are filtering, the shifting in 
phase of one of the filtered signals by 90° and a multiplication of the two 
signals. The shifting in phase is possible in the new Briiel & Kjaer Heterodyne 

Fig. 3. Practical measuring set up for cross-spectrum analysis utilizing two 
Heterodyne Slave Filters Type 2020. 

Slave Filter Type 2020 which has been designed with a view to also allow for 
cross-spectral density measurements. A typical measuring arrangement utilizing 
two Heterodyne Slave Filters is shown in Fig. 3.*) 

Practical Measurement Considerations 
In the practical measurement of cross-spectral density functions certain im­
portant facts have to be taken into account which may not be quite obvious 
from the theoretical derivations. One of the most important of these is the 
analyzer bandwidth/signal correlation time relationship. The mathematical 
Fourier transform, equation (2), actually presupposes a continuous frequency 
analysis with infinitely narrow band filters (e~lZnU). Such analog filters are 

*) The multiplier used in Fig. 3 was a slightly modified Burr Brown Model 1671/16 Function 
Module. ; ^ 
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neither practical (because of the infinite analyzing time required) nor do they 
exist. 
Commercially available analog filters have very definite bandwidths and the 
output of such a filter is therefore also self-correlated (auto-correlated) over 
very definite time intervals only. These time intervals may be regarded as the 
"memory" of the filter and it is clear that the multiplications required to obtain 
the cross spectral density function must be performed within the "memory 
time" of the filter. When the "memory" is not perfect the cross-spectral density 
function obtained will be in error. How large the error will be depends, of 
course, upon the "memory" of the filters and the time delay between the two 
signals being multiplied as demonstrated in the following. 
Theoretically the autocorrelation function for the output of a box-shaped 
narrow band filter of bandwidth At can be derived by taking the Fourier 
transform of the output power spectrum: 

Fig. 4. Auto-correlation function for the output of a narrow band "ideal" 
frequency analyzer fed with Gaussian random noise. 
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oo f + Af 
v ( r ) = J i v ( / ) e j2?rfT df = J*ce j2"Tfr o7 (12) 

— oo f 

v (T) = c [ cos (2 jrfir) off (13) 
f' 

where c = 2w(f) = constant. 

When integrated equation (13) becomes 

xp(x) = 0 [sin [2JTT(/ +4/)]-sin(2tf/T)] 

= 0 2 sin {aAh) cos [ 2 ? T T ( f + - ^ - ) J (14) 

By setting f0 = / + ~TT where /G here denotes the center frequency of the 
filter then: 

sin (nAh) 
%p (r) « czlf ~~2iT~ C 0 S ( 2 ^ (15) 

This function is plotted in Fig. 4 for the case where cAf = 1 and x = ^ZJ/T 
and it is seen that as long as Aft is small no significant loss of "memory" 
will occur. The practical conclusion which can be drawn from equation (15) 
and Fig. 4, is that the longer the delay time r between the inputs to the two 
filters used for cross-spectrum measurements is, the narrower must the band­
width of the filters be to achieve correct results. For instance, for the cross-
spectral density measurements to be correct to within some 5 % the following 
relation is obtained from Fig. 4: 

zJfr^O.2 (16) 

In practice no filter has the exact theoretical box-shape, and some experi­
ments have been made to investigate the influence of filter bandwidth in 
actual measurements. The experiments were carried out on the transmission 
of sound waves in an acoustically free field as illustrated in Fig. 5, and the 

Fig. 5. Arrangement used for measurements in an acoustic wave-field. 
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Fig. 6. Typical relative response curve for the filters used in the Heterodyne 
Slave Filter Type 2020. 

shape of the filter curves used is shown in Fig. 6 (typical relative response 
curve for the Heterodyne Slave Filter Type 2020). Two different experiments 
were performed: 

1) The bandwidth, Af, of the Slave Filters were kept constant at 100 Hz 
and the distance, tf, between the two microphones, i.e. the delay time, T, 
of the sound waves, varied. 

2) The distance between the microphone was kept constant and the band­
width of the filters, Af, varied. 

Because the sound field was not plane, corrections for the change in sound 
pressure level with distance had to be applied in the first experiment. This 
is readily made, however, simply by measuring the sound pressure level at 
each microphone position used. 
The results of the first experiments are given in Fig. 7 and indicate that the 
filters are very close to a theoretically "ideal" filter in that the measured data 

sin (x) 
fit the first lobe of the— v ~~ -function almost ideally (within the measure-

ment accuracy). This is the most important part of the correlation curve with 
respect to cross spectral density measurements. On the other hand, con­
siderable deviations exist between the theoretical curve and the measured 

sin (x) 
results for the second lobe of the —-—-funct ion. These deviations may be 

due partly to the not quite "ideal" shape of the filters used, and partly to 
the lower accuracy of the measuring arrangement in the region of very low 
correlation levels. As this part of the correlation curve is of no great practical 
interest no further investigation of the phenomena was made. 
It should be mentioned in connection with Fig. 7 that only the amplitude 

sin (x) 
f u n c t i o n — - — of equation (15) has been utilized for comparison between 

A 
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theory and practical measurements. In equation (15) also an oscillating part, 
cos (2^/ot), is included, which means that for more or less arbitrary values 
of f0 and r one may not actually measure the maximum amplitude value 

sin (x) 
determined by the———-function, see also Fig. 4. To "exclude" the os-

A 

dilating part of equation (15), however, it is only necessary to measure both 
i U < *■ sin (x) sin (x) 
the functions — — c o s ( 2 nhx) and —^-L sin (2 nU%) 

X A 

to square the two values so obtained, add them and take the square - root of 
the sum: 

I / [ s i n (x ) l 2 [sin (x) 12 , sin (x) 
1/ x — cos2 (2 nUx) + — - — sin2(2^f0r) = ——— 

sin (x) sin (x) 
Because the value of —~-—sin(2^rf0r) is equal to -—-—cos(2^/0 r ) shifted 

X X 

sin (x) 
Fig. 7. Comparison between the theoretical -function and results 

A 

obtained from measurements with the Heterodyne Slave Filter. 
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90° in phase it can be readily found by utilizing the 90° phase shift arrange­
ment included in the Heterodyne Slave Filter. The above described technique 
was used to obtain the data shown in Fig. 7. 
Fig. 8 shows the results from the second experiments. Here the distance 
between the two microphones was kept constant and the filter bandwidth 

Fig. 8. Effect of the variation in filter bandwidth upon the measured cross 
power spectral density when the delay time between the signals t(t) and fy(t) 

was of the order of 20 msec. 

varied: At = 3.16 Hz, At = 10 Hz, At = 31.6 Hz and At = 100 Hz. The distance 
between the microphones was approximately 7 meters and it can be seen 
that excellent correlation was obtained both in the case of the 3.16 Hz band­
width and in the case of the 10 Hz bandwidth. This was also to be expected 
from theoretical considerations. When the filter bandwidth was changed to 
31.6 Hz the correlation level was reduced to 0.42 and for a filter bandwidth 
of 100 Hz practically no correlation could be measured (see also Fig. 7: 
Af = 100 Hz, d = 7 m). 
From the experimental results it may be concluded that the theoretical rela­
tionships given in equations (15) and (16) also hold true for the Heterodyne 
Slave Filter Type 2020. 
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In addition to the analyzer bandwidth/signal correlation time error discussed 
above and formulated f. inst. in equation (16) another type of error has to be 
taken into account when cross spectral density measurements are made on 
random signals. This is the "normal" statistical error: 

(17) 

where T is the averaging time used in the multiplication (see equations (10) 
and (11)). 
An interesting conclusion which can be drawn from equation (17) in con­
junction with the analyzer bandwidth/signal correlation time requirement is 
that for a given averaging time, T, a decrease in filter bandwidth decreases 
the correlation time error but increases the statistical error, i.e. the two re­
quirements are in this case conflicting. If, for some reason, the averaging 
time in a particular measurement cannot be increased the analyzer bandwidth 
must therefore be chosen to compromise between the two types of error, 
a fact which may be worth while remembering when cross spectral density 
measurements are to be made. 

Applications of the Cross Power Spectrum Technique 
One of the most interesting applications of the cross power spectrum technique 
is its ability to determine the complex transfer characteristic from the source 
to any point in a physical system. This may be of special interest in the study 
of shipboard, aircraft or space-vehicle vibrations, but has also been used in 
vibration studies on automobiles and special machinery. The relation between 
the cross power spectral density measured between the source x and the 

Fig. 9. Illustration of transfer characteristic measurements on a complex 
machine without interfering with the machine's normal operation. 
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Fig. 10. Cross spectral density curves relating the output to the input of a 
simple single degree-of-freedom system excited by "white" random noise. 

a) Co-spectral density curve. 
b) Quad spectral density curve. 

point y in the system, Fig. 9, the ordinary power spectral density measured 
at x, and the (complex) transfer characteristic between x and y is: 

vMO = Hxy(f) iy„(/) (18) 
Here: wxy(f)= Cross power spectral density 
Hxy {f) = | Hxy (f) | e -i?xy(f)= Complex transfer characteristic between x and y. 
Wxx(0 = Power spectral density at x 

It should be pointed out at this stage that 

I wxy (f) | - VCxy (f)2 + Qyx (/)2 (19) 
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and 

"- ("= , a n" (£&-) (20) 
see also equations (4), (10) and (11) on p. 3 and 4. 

Thus from the measurement of the co- and quad spectral density functions 
between the points x and y as well as the power spectral density function 
at x it is a relatively easy matter to determine HKy(f) both with respect to 
magnitude and with respect to phase at each frequency band of interest. 
To demonstrate the use of this technique two simple measurements have been 
made at Bruel & Kjaer on analog models. 

Fig. 11. Similar to Fig. 10 except that in this case the system being investigated 
was a two degrees-of-freedom system. 

a) Co-spectral density curve. 
b) Quad spectral density curve. 
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The results of the first experiment are shown in Fig. 10, and was obtained 
from measurements on a single degree-of-freedom system excited by white 
random noise. (The same results could in this simple case have been obtained 
by exciting the system with a sweeping sine wave signal of constant RMS 
level). To allow for correct recording of both positive and negative values 
of the co- and quad spectrum the Level Recorder was supplied with a linear 
range potentiometer biased to deflect to the center line of the recording 
paper for zero output from the multiplier. 
Similarly Fig. 11 shows the results of measurements on a more complicated 
system (a two degrees-of-freedom system). 
Because the recordings are made automatically on frequency calibrated 
paper the co- and quad spectrum component can be read directly off the 
recording at any particular frequency and the computations according to 
equations (19) and (20) be readily performed. 
Another interesting application of the technique discussed in this paper is 
the possibilities it offers for the measurement of effective time delays in 
acoustical or mechanical wave fields. This may be best demonstrated by 
measurements in an acoustically free field, such as the sound field produced 
by a loudspeaker placed in a large anechoic chamber. The measurement 
arrangement used for these experiments was the same as that shown in 
Fig. 5, p. 7. 
As measurements on random signals using very narrow band filters are very 
time consuming the measurements were this time made by means of a sweep­
ing sine wave signal. Two different distances were used between the measur­
ing microphones. 
The results of the measurements are shown in Figs. 12 and 13 and demonstrate 
clearly the wave phase-effect. 
To derive a simple formula which allows the calculation of time delays from 
the spectra shown in Figs. 12 and 13 consider the following: 
If the signal at the point x is >4sin(2^/f) and represent a free progressive 
wave then the signal at the point y will be B sin (2 nft + (pf) where 

d 
<pt = -j- 2 n (21) 

d = Distance between the points x and y. 
I = Wavelength of the sound wave of frequency /. 

v 
As X = —;T~ where v is the velocity of sound then 

fd 
q>t = 2n-— = 2JITJ (22) 

d 
Here rt = -— = transmission time of the wave from the point x to the point y. 

The co-spectrum of the signals at x and y is: 
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Cx y = , i m - 1 - \ AS sin (2 lift) sin (2 nft + tpf) dt = 

o 
1 

= 2 AB cos cpt (23) 

which will vary with frequency as cos tp<. Now cos <pf = 0 when 95f — n n 

whereby the following conditions for zero crossings of the co-spectrum can be 
obtained from equation (22): 

Fig. 12. Results obtained from measurements in an acoustically free field. 
Distance between microphones 4 m. 

a) Co-spectral density curve. 
b) Quad spectral density cur/e. 
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2nx,U — n 2 and 2mxL-\ = (n-1) 2 (24) 

By subtracting the two equations (24) the following simple relationship is 
obtained between the transmission time rt of the wave, the distance, c/, 
between the measurement points and two successive zero-crossing of the 
co-spectrum: 

d 1 m\ 

Fig. 13. Similar to Fig. 12. Distance between microphones 7 m. 
a) Co-spectral density curve. 
b) Quad spectral density curve. 
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The same relationship is, of course, obtained for zero-crossings of the quad 
spectrum with the only difference that the zero—crossings are shifted 90° in 
phase, see also Figs. 12 and 13. 
In Figs. 12 and 13 only the first few zero-crossing are shown as the zero-
crossing spectrum "blurrs out" on the paper when the frequency is increased. 
This can be avoided by a suitable expansion of the frequency scale. It was, 
however, felt that for the purpose of demonstration only the first parts of 
the spectra were required. 
By checking the distances calculated from equation (25) with the actually 
measured distances between the microphones extremely good correlation was 
found. 
Finally, it should be pointed out that by measuring both the cross spectral 
density between the signals observed at the points x and y in a physical 
system and the ordinary power spectral density at both points the correlation 
coefficient Rxy, between the two signals can be calculated from the formula: 

a, - 1/Î d2 (26) 

As this coefficient depends on frequency it is normally termed coherence 
function (to distinguish it from the correlation function which is defined in 
the time domain). The coherence function is often denoted by yxy (f) whereby 
equation (26) takes the form: 

7xv(0 = l/___ 1 ^ - (0 I2 (27) 
Y Wxx (/) Wyy {f) 

Conclusion 
The practical cross power spectrum technique, as discussed in the preceeding 
text, has received relatively little attention to date. Although the basic theory 
has been available for some time its actual practical value seems to have 
been underestimated and very little instrumentation suited for cross spectral 
density measurements has been commercially available. In the author's opinion 
the cross power spectrum technique represents a very powerful tool in cases 
were ordinary transfer function measurements are difficult to make. 
Apart from complete transfer characteristic determinations the cross power 
spectrum, as demonstrated, also allows correlation coefficients and time 
delays to be determined directly as a function of frequency without the use 
of vast mathematical machinery. 
Furthermore, as the measurements can often be made without interfering with 
the system's normal operation this "new" technique is deemed to become a 
significant factor in tomorrow's measurement technology. 
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Cross Power Spectral Density Measurements with 
Bruel & Kjaer Instruments. (Part 1). 

By 
Pavel Urban and Vladimir Kop, 

Motor Car Research Institute, Prague. 

ABSTRACT 
After a discussion of some aspects of the cross-power spectrum theory it is shown how 
two B & K Audio Frequency Spectrometers Type 2112 may be utilized to determine the 
cross-power spectrum of electrical and mechanical phenomena. To obtain the phase shift 
required to measure the quad-spectrum two so-called Gorges bridges were used. The 
principle of operation and basic circuit diagram for the bridges are outlined, and some 
practical cross spectrum measurements briefly described. 

SOMMAIRE 
Apres un expose de quelques aspects de la theorie interspectrale, on montre comment deux 
spectrometres B.F. Bruel & Kja9r type 2112 peuvent etre utilises pour determiner I'interspectre 
de puissance de prenomene electriques et mecaniques. Pour obtenir le decalage de phase 
requis pour mesurer le spectre de la composante en quadrature, deux ponts de Gorges 
sont employes. Le principe de fonctionnement et le schema de principe des ponts sont 
decrits et quelques mesures pratiques interspectrales sont brievement exposees. 

ZUSAMMENFASSUNG 
Zunachst werden einige Aspekte der Kreuzleistungsspektrum-Theorie erortert; dann wird 
gezeigt, wie sich zwei B & K-Terz/Oktav-Analysatoren Typ 2112 dazu verwenden lassen, das 
Kreuzleistungsspektrum elektrischer und mechanischer Phanomene zu bestimmen. Urn die 
zum Messen des Quad-Spektrums (Imaginarteil) erforderliche Phasendrehung zu bewirken, 
wurden zwei sogenannte Gorges-Brucken benutzt. Das Arbeitsprinzip und die Grundschaltung 
der Briicken werden umrissen, und einige praktische Kreuzspektrums-Messungen werden 
kurz beschrieben. 

1. Introduction 
The theoretical treatment of acoustical and mechanical phenomena has prac-

^ 

tically always been based on the use of simple harmonic signals. This simpli­
fication has until recently been quite satisfactory. Experience shows, however, 
that machines and plants, as met in everyday life, do not produce such signals. 
The most frequently met signals are more or less random in nature, and may 
be considered as broad-band or narrow band noise, or various combinations 
of both types. 
For the description of such processes the existing theory for harmonic signals 
is not directly applicable because a random signal cannot be exactly defined 
analytically in the time domain. To be able to furnish some sort of analytical 
description we have to apply principles commonly used in theoretical statistics. 
In previous Bruel & Kjaer publications (L1, L2) such principles have been dis­
cussed to a certain extent, e.g. the use of probability distributions for signal 
amplitudes, power spectral density functions and auto-correlation functions. 
The two last mentioned functions (the power spectral density function and the 
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auto-correlation function) express the signal power properties. This information 
will, in many cases, suffice, its "disadvantage" being, however, the lack of 
phase information necessary to solve various problems of interference, re­
flection or parallel path propagation. 
To solve these problems it is necessary to introduce slightly more complex 
correlation functions or power spectral density functions which, on the 
average, describe the mutual statistical dependency of two signals, i.e. cross 
correlation functions or cross power spectral density functions. 
Considering that it is common engineering practice today to describe acous­
tical and mechanical signals in the frequency domain rather than in the time 
domain the remaining part of this article will discuss the theory and measure­
ment of the cross power spectral density function. 

2. The Concept of Cross Power Spectral Density 
In the publication (L2) the power spectral density function was defined as 

MM0 = llm lim _ ^ 7
f 2 ; / 

showing that the power spectral density, Wxx(f), at a frequency, /, is given by 
the average of the square of that part of the signal time function, x {t) which is 
contained in an infinitely narrow frequency band, B, centered at the frequency 
f. The value is averaged over an infinitely long time, T. 
Similarly we can define the power spectral density Wyv (f) of the signal time 
function, y (f), by substituting yB

2 {f, t) in the above expression. 
Provided that we shall be interested in the so-called cross power spectral 
density of the signal time functions x (f) and y (t), it is necessary to substitute 
the square of one of the two signals by their product in the expression /*!/. 
This substitution results in the definition: 

l/MO = lim lim _ ± . J X B ( / | 0 ( f>0 tW /2 / 

The function tVxy (/) is generally a complex number and is often designated as 
Wxy (jco) where co = 2 nf = angular frequency. In the publication (L2) the auto­
correlation function was defined as 

The definition of the cross correlation function is again analogous and for 
our signal time function x (t) and y (t) it can be defined as 

1 +T 
W*, (T) = x (t) y {t + r) = lim 2T~ J" x (0 y (' + T) dt / 3 / 

T->oo - 7 

This formula describes that the cross correlation function is an average value 
of the product of the signal time functions x (t) and x (y), the latter being 
delayed by the time r. 
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According to the Wiener-Kintchine relation, also mentioned in (L2), the cross 
power spectral density function can be derived from the cross correlation 
function in that 

oo 
Wxy (jco) = J ifxy (r) exp (- /COT) dx 141 

— oo 

In the following discussion we shall principally use this definition. The ex­
pression 121 served only to explain the relationship between the terms "cross 
power spectral density" and "power spectral density" as defined in (L2). 

3. The Approximative Cross Power Spectrometer Principle 
Consider first a linear system with one input signal and one output signal, see 

Fig. 1. A linear system with impulse response function k(t) to which the input 
signal x}(t) is applied. 

Fig. 1. The passage of the signal through the linear system can be expressed 
in the time domain by the so-called convolution integral 

CO 

x2 (t) = J k (r) X, {t - r) dt 151 
— CO 

where k (t) = unit impulse response of the linear network 
Xi (t) = input signal 
x2 (t) = output signal 

x = independent time variable 

Consider next Fig. 2. The signal x (t) is passed through the network K with a 
unit impulse response, k(t), and the signal y (t) through the network H with a 
unit impulse response, h (f), both output signals being multiplied and the 

Fig. 2. The principle of cross-power measurements. 
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average value of the product being measured. The result of the measurement 
will be designated as M2 and expressed mathematically as 

-| 7 oo oo 
M2 = x2 (0 y2 (t) = Mm 2 y J [ J J x (t-x) k (r) y (t- f) ft (£) cfircff] off /6/ 

7->-oo - 7 —oo —oo 

where r and £ are independent time variables. 
As we are dealing with linear theory and physically realizable systems it is 
possible to interchange the order of separate operations whereafter some 
mathematical rearrangement, equation /6/ takes the form 

CO oo 7 + £ 

AA2 = ( [k(£ + T)h(£)\ ' { T ^ --_ [ x (t) y(t + r) dt]drd£ 111 

—oo —oo — 7 + £ 

The expression in square brackets is identical to the right hand side of 
equation /3/, whereby 

CO CO 

M2 = J* J ff ( | + T) ft (I) y«y (T) d | d r /8/ 
—CO —CO 

It can be proved that 
CO CO 

J * (f + f) ft (£) d£ = J K* (/<o) W (yco) exp (- /<ur)<tf /9/ 
- CO — CO 

where 
CO 

H (/co) - J /? (£) exp (- /<of) c/f /10a/ 
— CO 

H(/o>) is the transfer function for the network H in the frequency domain and 
CO 

K*(jco) = J /c (T) exp (/cur) dr /10b/ 
— CO 

K*(ja>) is the complex conjugate function to the system transfer function 
K(jco) for the network K. 
Substituting the expression /9/ in equation /8/ gives after rearranging the terms 

CO oo 
AA2 - J K* (ico) H (jco) [ J yj*y (r) exp ( - /cor) dr] df / 1 1 / 

— CO — OO 

where the expression in square brackets is identical with equation /4/, i.e. the 
cross power spectral density function. The resulting form of the equation is 
thus 

CO 

AA2 = J l/l/xy (jco) K*(jco) H (}co) df /12/ 
— oo 

In carrying out further derivations let us assume that both the networks K and 
H have the properties of idealized bandpass filters, satisfying the relations 
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/ 1 for h^f£ k 
K* (ico)H(i(o) = ( /13/ 

\ 0 for / < / d ; f>k 
where f6 and h are the limiting frequencies of the band-pass filters. 
A quantity Mf(f) can then be defined as 

M,2(/) = §Re\ Wv(ia>) \dt hAl 
U 

where Re ^ l/l/xy (jco) ^ is the real part of the cross power spectral density 
function. If the idealized band-pass filters have such a configuration that the 
following relations are satisfied 

/ _ / = _ V _ 1 for U<f<k , , 
K {jco) H {jco) = ; ~~ ~~ /15/ 

x 0 for f< U\ f > fh 

it can be proved that 

M2
2 (/) = J /m <{ Wxy (/a)) \- o7 / 16 / 

where 

Wxy (A») = 1 [M,2 (0 + y'M2
2 (/)] /17/ 

6 
J 

B = fh-h ; / = V'fh x"7d 

provided that the variation of Wxy (/&>) is small inside the frequency band, B, 
considered. 

Fig. 3. A cross-power spectrometer. 
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4. Realization of a Cross Power Spectrometer 
Let us now interpret the practical results of the above theoretical derivations. 
Equation /13/ is satisfied if both of the filter networks used (K and H) are 
identical and have unit gain. To produce such networks two B & K Audio Fre­
quency Spectrometers Type 2112 may be used. 
Similarly, equation 715/ is satisfied if the output signal from one of the two net­
works (K and H) is turned 90° (JZ/2) in phase. This can be realized in practice 
by adding two additional networks to the Spectrometers (P/?i and Ph2 in Fig. 3). 
A further necessary operation is to multiply the output signals, an operation 
which in our case was performed by means of a DISA Type 55 A 06 correlator. 
It is clear, however, that any good analog multiplier may be used for this 

Fig. 4. The Gorges bridge circuit. 
a) Principle of operation. 

b) Basic schematic diagram. 
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purpose. The complete measuring arrangement as used in the Motor Car 
Research Institute in Prague is sketched in Fig. 3. 
The greatest problem of the cross-power spectrometer arrangement shown is 
to provide the required phase shift of 90° (JT/2) over the complete frequency 
band of the band-pass filters in the Spectrometers. In the authors construction 
the use of two so-called Gorges bridges, the principle of which is shown in 
Fig. 4a), proved to be the best solution to this problem. The actual circuit 
connections are sketched in Fig. 4b). 

Fig. 5. Theoretical phase vs. frequency response of a Gorges phasing network. 

Fig. 5 shows the phase vs. frequency characteristic of one of the bridges, its 
amplitude transmission characteristic being frequency independent. By suit­
able choice of components in the networks Ph} and Ph2 (Fig. 3) the relative 
phase angle between the two outputs can be kept at a value of 90° (TI/2) inside 
the frequency band, Af, see Fig. 6. 

I 

I 

Fig. 6. Theoretical phase vs. frequency characteristics of two Gorges phasing 
networks ensuring a constant phase difference between the outputs of 90° 

(n/2). 
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The instrumentation system described above has been developed by the 
authors in the Motor Car Research Institute in Prague and has been used to 
solve a number of problems, some of which are briefly mentioned in the 
following. 

5. Some Uses of the Cross-Power Spectrometer 
By means of the spectral theory of random signals a series of problems can 
be solved. Some of these will be discussed in conjunction with Part II of this 
paper while a particularly important application of cross-power spectral 
measurements is described below. This is its use to determine the properties 
of linear systems with a non-deterministic input. 

Fig. 7. A linear system with input x(t) and output y(t). 

Let the (random) signal x[t) be applied to the input of an unknown linear 
system with a complex transfer characteristic F {jco), see Fig. 7. The output 
from the system is designated as y{t). It can now be shown theoretically that 
the cross-power spectral density function of the input signal, x(t), and the 
output signal, y(f), is related to the power spectral density function of the 
input signal by the relationship 

V M M = F {j<o) WKK (io>) /18/ 

where Wxx (jco) = power spectral density of the input signal. 
Wxy (jco) = cross power spectral density of the output and input signals. 

The application of the instrumentation system, described in the preceding text, 
to the above problem can be illustrated by the following: 
The input and output signals of the system, Fig. 7, can be measured. However, 
let us assume that the input signal to the system cannot be freely chosen but 
is of random nature. It is then possible from measurements in conjunction with 
formula /18/ to determine the transfer characteristic of the system. 
As an example of such measurements the amplitude and phase characteristics 
of a known RC-network are shown in Fig. 8 together with some measured 
points. In the first case the characteristics were measured by applying white 
Gaussion random noise from a Random Noise Generator Type 1402 to the 
input of the system (measurement points marked by o). in the second case 
the input was obtained from tape recorded automotive noise (measurement 
points marked by • ) . The agreement between the theoretically calculated 
response and the measured data is quite satisfactory. In Fig. 9 the same data 
is plotted in the complex plane. 
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Fig. 8. Transmission characteristic of an RC-network. 
a) Amplitude characteristic. 
b) Phase characteristic. 
o = Measured with white Gaussian random noise applied to the input. 
• = Measured with tape recorded automotive noise applied to the input. 

The result of a second example of cross-power spectrum measurements is 
shown in Fig. 10. Here the vibration transmission through an elastic bearing 
member of an automotive engine was measured. In this case the input signal 
was obtained from the vibrations of a running engine. 

6. Conclusion 
The methods of modern statistical dynamics enable us to solve numerous 
problems connected with random noise and vibration phenomena. These 
methods can, however, normally be utilized only in conjunction with highly 
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Fig. 9. The same data as shown in Fig. 8 replotted in the complex plane. 

Fig. 10. Results of vibration transmission measurements on an elastic bearing 
member of an automotive engine plotted in the complex plane. 
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specialized expensive measurement equipment. On the other hand, as illustrat­
ed in this article some problems can be solved by means of analog instru­
mentation systems currently used in modern laboratories. 
One of the greatest limitations of the instrumentation system discussed here 
is that its smallest filter bandwidth is 1/3 octave. This bandwidth may be too 
large to solve many of the existing problems, and filters with narrower band-
widths have to be used*). An instrument with considerably narrower band­
width which is presently available on the market is the Frequency Analyzer 
Type 2107. It is, however, not immediately possible to apply the principles 
discussed in this article to the Type 2107 Analyzer because identical phase 
characteristics of the band-pass filters cannot be guaranteed with tuned 
analyzers. In the Motor Car Research Institute in Prague a method has been 
developed which allows cross-power spectral measurements to be made also 
with this instrument. The method used will be discussed in Part II of this 
paper. 
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News from the Factory 
Piezoelectric Accelerometers Type 4339 and 4343 
These Accelerometers, which are designed as single-ended compression type 
accelerometers, can be used even in extreme environments. An extension 
calibration and temperature stabilizing procedure has been undertaken to 
ensure completely predictable performance and stable operation, one of the 
main features being that each accelerometer of one type has exactly the same 
sensitivity (to within ± 2%). The accelerometer housing is of an all welded 
stainless steel construction which makes it absolutely waterproof. A special 
ceramic input socket ensures complete sealing even after repeated tempera­
ture cycling up to 250°C. 

Some typical performance data are summarized below 

Accelerometer 4339 4343 

Contained in set as Type 4319 4323 

Contained in package of 5 as Type 4359 4363 

Sensitivity mV/g 10 ± 0.2 approx. 10 

Sensitivity pC/g approx. 10 10 ± 0.2 

Free resonance kHz 75 75 

Capacity incl. cable pF 1000 1000 

Transverse sensitivity % < 3 < 3 

Max. ambient temp. °C 260 260 

Temperature sensitivity dB/°C 0.02 0.02 

Max. shock, g 10,000 10,000 

Freq. range with steel screw ± 2 % 0.5*<-10,000 0.5*<-10,000 
Hz 

on stainless steel ± 1 0 % 0.5*<-15,000 0.5*<-15,000 

Weight, grams/ounces 16/0,57 16/0,57 

Sensitivity time stability 2 % per year 2 % per year 

Each Accelerometer is supplied with its individual calibration chart and an 
instruction manual containing a number of additional typical characteristics 
and operating instructions. 

Miniature Piezoelectric Accelerometer Type 4344 
The miniature Accelerometer Type 4344 is designed for vibration measure­
ment on light-weight structures where a heavy transducer would change the 
mode of vibration and thereby invalidate the results obtained. It will be found 
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Accelerometer 4339 4343 

Contained in set as Type 4319 4323 

Contained in package of 5 as Type 4359 4363 

Sensitivity mV/g 10 ± 0.2 approx. 10 

Sensitivity pC/g approx. 10 10 ± 0.2 

Free resonance kHz 75 75 

Capacity incl. cable pF 1000 1000 

Transverse sensitivity % < 3 < 3 

Max. ambient temp. °C 260 260 

Temperature sensitivity dB/°C 0.02 0.02 

Max. shock, g 10,000 10,000 

Freq. range with steel screw ± 2 % 
Hz 

on stainless steel ± 1 0 % 

0.5 *<-10,000 

0.5 *<-15,000 

0.5 *<-10,000 

0.5 *<-15,000 

Weight, grams/ounces 16/0,57 16/0,57 

Sensitivity time stability 2 % per year 2 % per year 



TV 
Fig. 1. The Accelerometer Set Type 4359 containing the Accelerometer 

Type 4339. 

valuable in research projects involving thin plates and shells, such as aircraft 
skins, car bodies, component testing etc. 
This Accelerometer is also of the single-ended compression type. The con­
struction is sealed and waterproof for operation in moisture chambers or 

Fig. 2. Single unit of an Accelerometer Package of 5, Type 4364, containing 
Accelerometer Type 4344. 
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under water, and the working temperature range is from -90 to + 260°C. Each 
Accelerometer is supplied with its individual calibration chart and some typical 
performance data are summarized in the table below. 

Accelerometer 4344 * Transverse Sensitiv. % 8 

Contained in set as Type 4324 Max. Ambient 9 f i n 
Temperature (°C) DU 

Contained in package A~aA  
of 5 as Type 4 c S M 0.02 

'Sensitivity (mV/g) 2-3 *_ n / u x 2 % 0.5-25,000 7 v a / Freq. Range (Hz) ^ n / n ^ A„„nn 
'Charge Sensitivity (pC/g) 2-3 9 ^ 1 0 % 0.5-40,000 

♦Free Resonance (kHz) 125 W e i g h t ( g r a m s ) 2 

*~ .. . . . . , Material of Base Titanium 
Capacity includ. cable g 0 Q  
( p F ) * * * The low frequency cut-off is deter-

* , .. . . ; ; : ~T ~ mined by preamplifier. 
Individual values given on the calibra­
tion chart. 

* * With standard low-noise cable, 
1.2 m (4 feet) long. 

Wide Range Charge Amplifier Type 2624 
The combination of a charge amplifier and a piezoelectric accelerometer gives 
a sensitivity which is independent of the cable length within very wide limits. 
This makes a charge amplifier especially attractive in vibration systems where 
different cables are used. The Charge Amplifier Type 2624 may be used with 
cable lengths up to several thousand metres. A charge amplifier also provides 
the possibility of very low frequency measurements and in the case of Type 
2624, the limit is 0.003 Hz in the least sensitive mode, this makes the pre­
amplifier ideal for measurements of shocks and long duration transients. 
Typical frequency characteristics for various settings of the Charge Amplifier 
controls are shown below. 

Vibration Pick-up Preamplifier Type 2625 
The Vibration Pick-up Preamplifier Type 2625 is provided with integration net­
works for measurement of velocity and displacement in addition to accelera­
tion. There are three input sockets connected to a selector switch with in­
dividual sensitivity adjustment for each input. The two inputs not in use are 
connected to ground. 
A function selector controls three different gain ranges for the three inputs: 
1. Variable from - 4 0 to -20 dB. 2. Variable from 0 to + 2 0 dB. 3. Fixed at 
0 dB. The integration networks are passive RC networks with three different 
lower frequency limits, 1, 10 and 100 Hz for velocity, and six limits. 1, 3, 10, 30, 
100 and 300 Hz for displacement measurements. 
A field effect transistor stage in the input circuit gives extremely high input 
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Accelerometer 4344 * Transverse Sensitiv. % 8 

Contained in set as Type 4324 Max. Ambient 
Temperature (°C) 260 

Contained in package 
of 5 as Type 4364 

Max. Ambient 
Temperature (°C) 260 

Contained in package 
of 5 as Type 4364 0.02 

'Sensitivity (mV/g) 2-3 / ,_ ,N 2 % Freq. Range (Hz) 1Q % 
0.5-25,000 
0.5-40,000 'Charge Sensitivity (pC/g) 2-3 

/ ,_ ,N 2 % Freq. Range (Hz) 1Q % 
0.5-25,000 
0.5-40,000 'Charge Sensitivity (pC/g) 2-3 

Weight (grams) 2 *Free Resonance (kHz) 125 Weight (grams) 2 *Free Resonance (kHz) 125 
Material of Base Titanium 'Capacity includ. cable 

(PF)** 900 
Material of Base Titanium 'Capacity includ. cable 

(PF)** 900 
* The low frequency cut-off 

mined by preamplifier. 
is deter-

* Individual values given on the 
tion chart. 

* * With standard low-noise cable, 
1.2 m (4 feet) long. 

calibra-

* The low frequency cut-off 
mined by preamplifier. 

is deter-



Fig. 3. Charge Amplifier Type 2624. 

Fig. 4. Vibration Pick-up Preamplifier Type 2625. 
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impedance variable from about 3000 MQ at + 20 dB. To allow for convenient 
battery operation of the preamplifier, if this should be desired, a special built-
in battery compartment is included in the construction. However, the instru­
ment can also be powered by an external source of 28 Volts DC. 

New Module System of Instrumentation 
Both the Preamplifiers Type 2624 and 2625 (see above) have dimensions which 
fit the new Briiel & Kjaer module system of instrumentation. This system has 
been designed to allow for a very flexible mechanical system build-up, and 
the instruments can be mounted in portable, transportable or permanent'con­
figurations as follows: 
1. As single instruments (2624, 2625). 
2. One-tier system in various combinations of sizes. - In metal cabinet, metal 

cabinet in mahogany housing or metal cabinet for rack mounting, cor­
responding to our normal A, B or C versions. 

3. Three-tier system in various combinations of sizes. 
Any necessary instrument service has been made as simple as possible so far 
as case disassembly is concerned, as the construction is made up of slide-on 
and off panels requiring the minimum of retaining screws. 

Fig. 5. One-tier Module System of Instrumentation. 
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